The Value of Queue Position in a Limit Order Book

Ciamac C. Moallemi
Graduate School of Business
Columbia University
email: ciamac@gsb.columbia.edu

Joint work with
Kai Yuan (Columbia).
The Limit Order Book (LOB)

Typically "price-time priority":
- Highest priority for best price
- FIFO amongst orders at the same price (compare with "pro rata" markets)
The Limit Order Book (LOB)

Typically "price-time priority": highest priority for best price. FIFO amongst orders at the same price (compare with "pro rata" markets).
Typically “price-time priority”:

- highest priority for best price
- FIFO amongst orders at the same price (compare with “pro rata” markets)
The Value of Queue Position

Why does queue position matter?

- Earlier execution \implies higher fill rates
- Less adverse selection

Is queue position important in practice? Yes!

Some practitioners (e.g., HFT market makers) expend significant effort to obtain good queue position:

- One driver of investment in low latency trading technology (Latency is especially important after a price change!)
- “Layering” in HFT market making strategies
- Recent interest in exotic order types …
The Value of Queue Position

Why does queue position matter?

• Earlier execution \implies higher fill rates
• Less adverse selection

Is queue position important in practice? Yes!
The Value of Queue Position

Why does queue position matter?

- Earlier execution \implies higher fill rates
- Less adverse selection

Is queue position important in practice? Yes!

Some practitioners (e.g., HFT market makers) expend significant effort to obtain good queue position:

- One driver of investment in low latency trading technology (Latency is especially important after a price change!)
- “Layering” in HFT market making strategies
- Recent interest in exotic order types ...
Regulatory guidelines generally require stock exchanges to honor the best-priced buy and sell orders, on whatever exchange they were placed, and to execute them in the order in which they were entered. Together, these principles are known as “price-time priority.”

Mr. Bodek says he realized the orders he was using were disadvantaged, compared with Hide Not Slide orders. He says he found that in certain situations, the fact that a Hide Not Slide order was hidden allowed it to slip in ahead of some one-day limit orders that had been entered earlier. He also learned that other stock exchanges had order types somewhat like Hide Not Slide, with different twists.
Our Contributions

- Develop a dynamic model for valuing limit orders in large tick stocks based on their queue position
 - Informational component: adverse selection
 - Dynamic component: value of “moving up” the queue
 - Tractable, quasi-analytical solution

- Numerically calibrate and illustrate the result in U.S. equity examples
 - Model predictions validated through fine-grained backtesting
 - Value of queue position can be very large
 For some stocks, it has same order of magnitude as the half-spread!
 - Must account for queue value in making algorithmic trading / market making decisions
Literature Review

- Work on estimating components of bid/ask spread
 [Glosten, Milgrom; Glosten; …]

- Empirical analysis of limit order books
 [Bouchaud et al.; Hollifield et al.; Smith et al.; …]

- Queuing models for limit order books
 [Cont, Stoikov, Talreja; Cont, de Larrard; Cont, Kukanov; Stoikov, Avellaneda, Reed; Maglaras, Moallemi, Zheng; Predoiu et al.; Guo, de Larrard; Kukanov, Maglaras; …]

- Optionality embedded in limit orders
 [Copeland, Galai; Chacko, Jurek, Stafford; …]

- Large-tick assets
 [Daryi, Rosenbaum; Skouras, Farmer; …]
Value of Queue Position

Early execution

- Early execution = less waiting time
- More likely to trade, i.e., higher fill probability
Value of Queue Position

Early execution

- Early execution = less waiting time
- More likely to trade, i.e., higher fill probability

Less adverse selection cost

- More likely to be filled by big trade if at the end of the queue
- Big trades often indicate future price changes (informed trades)
- Glosten (1994): static model, single period
- Skouras & Farmer (2012): queue position valuation in a single period setting
Dynamic setting

- Limit orders may persist over a time interval
- Order rest until filled or until cancelled if prices move away
- Fills and prices changes are interdependent
- Informational component: captures value of adverse selection
- Dynamic component: captures value of “moving up” the queue
Large Tick-Size Assets

Our model applies to large (relative) tick-size assets:

- Constant, one tick bid/ask spread
- Large queues at bid and ask prices

Figure 1: Proportion of time market is not one-tick (log scale), displayed liquidity over average trade size (log scale), and quote reversion probability, averaged throughout July–August 2013. Symbols and colors indicate clusters.
Large Tick-Size Assets

Our model applies to large (relative) tick-size assets:

- Constant, one tick bid/ask spread
- Large queues at bid and ask prices

Various Futures Contracts, July–August 2013 (courtesy Rob Almgren)
$V =$ fundamental value of asset (unknown, random variable)
Latent Efficient Price Process

\[V = \text{fundamental value of asset (unknown, random variable)} \]

If a risk-neutral market maker sells at the ask price \(P^A \) at time \(t \), the expected profit is

\[\mathbb{E}[P^A - V|\mathcal{F}_t] = P^A - P_t \]

where

\[P_t = \mathbb{E}[V|\mathcal{F}_t] \]

is the latent efficient price.
\[P_t = P_0 + \lambda \sum_{i: \tau_i^{(u)} \leq t} u_i + \sum_{i: \tau_i^{(J)} \leq t} J_i \]
Price Dynamics

\[P_t = P_0 + \lambda \sum_{i: \tau_i^{(u)} \leq t} u_i + \sum_{i: \tau_i^{(J)} \leq t} J_i \]

Price changes due to trading:

- I.I.D. trades with size \(u_i \), \(E[u_i] = 0 \), density \(f(\cdot) \)
- Trade times \(\tau^{(u)} \) Poisson with rate \(\mu \)
- Linear and permanent price impact coefficient \(\lambda \)
- Adverse selection, e.g., Kyle (1984)
Price Dynamics

\[P_t = P_0 + \lambda \sum_{i: \tau_i^{(u)} \leq t} u_i + \sum_{i: \tau_i^{(J)} \leq t} J_i \]

Exogenous price jumps:

- I.I.D. jumps of size \(J_i \), \(\mathbb{E}[J_i] = 0 \)
- Jumps model instances where the bid/ask prices shift
- Jump times \(\tau_i^{(J)} \) Poisson with rate \(\gamma \)
- Captures high-level features of low latency price processes e.g., Barndorff-Nielsen et al. (2012)
Order Placement

Consider an agent placing an infinitesimal sell order at the ask price P^A and at queue position q. Subsequently, the following events can occur:
Order Placement

Consider an agent placing an infinitesimal sell order at the ask price P^A and at queue position q. Subsequently, the following events can occur:

- A trade of size $u_i \geq q$
 \Rightarrow the order is filled
Order Placement

Consider an agent placing an infinitesimal sell order at the ask price P^A and at queue position q. Subsequently, the following events can occur:

- A trade of size $u_i \geq q$
 \Rightarrow the order is filled

- A trade of size $0 < u_i < q$
 \Rightarrow the order moves up to queue position $q - u_i$
Consider an agent placing an infinitesimal sell order at the ask price P^A and at queue position q. Subsequently, the following events can occur:

- A trade of size $u_i \geq q$
 \Rightarrow the order is filled

- A trade of size $0 < u_i < q$
 \Rightarrow the order moves up to queue position $q - u_i$

- An upward jump $J_i > 0$
 \Rightarrow the next bid crosses the current ask and the order is filled
Order Placement

Consider an agent placing an infinitesimal sell order at the ask price P^A and at queue position q. Subsequently, the following events can occur:

- A trade of size $u_i \geq q$
 \[\Rightarrow \text{the order is filled} \]

- A trade of size $0 < u_i < q$
 \[\Rightarrow \text{the order moves up to queue position } q - u_i \]

- An upward jump $J_i > 0$
 \[\Rightarrow \text{the next bid crosses the current ask and the order is filled} \]

- An downward jump $J_i < 0$
 \[\Rightarrow \text{the next ask is lower than the current ask, agent cancels} \]
Order Placement

Consider an agent placing an infinitesimal sell order at the ask price P^A and at queue position q. Subsequently, the following events can occur:

- A trade of size $u_i \geq q$
 \Rightarrow the order is filled

- A trade of size $0 < u_i < q$
 \Rightarrow the order moves up to queue position $q - u_i$

- An upward jump $J_i > 0$
 \Rightarrow the next bid crosses the current ask and the order is filled

- An downward jump $J_i < 0$
 \Rightarrow the next ask is lower than the current ask, agent cancels

- A cancellation
 \Rightarrow the order moves closer to the front
Define $\delta_t \triangleq P^A - P^-_t$ to be the liquidity premium / spread over the efficient price earned by a seller at the ask price. Note that:

$$1 - \delta_t = P^-_t - P^-$$

is the liquidity premium for a buyer $\delta_t > 1/2 \Rightarrow$ efficient price is closer to the bid $\delta_t < 1/2 \Rightarrow$ efficient price is closer to the ask $\delta_t \approx 1/2 \Rightarrow$ efficient price is close to the mid
Order Valuation

Define $\delta_t \triangleq P^A - P_t -$ to be the liquidity premium / spread over the efficient price earned by a seller at the ask price. Note that:

- $1 - \delta_t = P_t - P^B$ is the liquidity premium for a buyer
- $\delta_t > 1/2 \Rightarrow$ efficient price is closer to the bid
- $\delta_t < 1/2 \Rightarrow$ efficient price is closer to the ask
- $\delta_t \approx 1/2 \Rightarrow$ efficient price is close to the mid
Order Valuation

Define $\delta_t \triangleq P^A - P_t^-$ to be the liquidity premium / spread over the efficient price earned by a seller at the ask price. Note that:

- $1 - \delta_t = P_t - P^B$ is the liquidity premium for a buyer
- $\delta_t > 1/2 \Rightarrow$ efficient price is closer to the bid
- $\delta_t < 1/2 \Rightarrow$ efficient price is closer to the ask
- $\delta_t \approx 1/2 \Rightarrow$ efficient price is close to the mid

Define $V(q, \delta)$ be the value of a sell order at the ask price in queue position q when the liquidity premium is δ.

We solve for $V(q, \delta)$ via dynamic programming.
Value Function

Theorem.

\[V(q, \delta) = \alpha(q)(\delta - \beta(q)) \]

where

\[\alpha(q) = P(\tau_q < \infty) = \text{fill probability} \]

\[\beta(q) = \text{adverse selection costs conditional on trade} \]
Theorem.

\[V(q, \delta) = \alpha(q)(\delta - \beta(q)) \]

where

\[\alpha(q) = \mathbb{P}(\tau_q < \infty) = \text{fill probability} \]
\[\beta(q) = \text{adverse selection costs conditional on trade} \]

Here, \(\alpha(q) \) is uniquely determined by the integral equation

\[\alpha(q) = \frac{1}{p_u^+ + \gamma/\mu + \eta^+/\mu} \left\{ p_u^+ + \int_0^q (\alpha(q - x) - 1)f(x) \, dx \right\} \]
\[+ \frac{p_j^+ \gamma/\mu}{p_u^+ + \gamma/\mu + \eta^+/\mu} + \frac{\eta^+/\mu}{p_u^+ + \gamma/\mu + \eta^+/\mu} \int_0^1 \alpha(sq)g(s) \, ds. \]

and \(\beta(q) \) is uniquely determined through an analogous integral equation.
Order Valuation

\[V(q, \delta) = \alpha(q)(\delta - \beta(q)) \]

Easy to solve for value function

- Can easily compute \(\alpha(\cdot), \beta(\cdot) \) numerically (linear integral equations)
- Can be solved in closed form in some instances (e.g., exponential trade size)

Required parameters:

- \(\gamma/\mu = \) ratio of arrival rate of jumps to arrival rate of trades
- \(\eta/\mu = \) ratio of arrival rate of cancellations to arrival rate of trades
- \(f(\cdot) = \) distribution of trade size
- \(\lambda = \) price impact coefficient
- \(p^+J = \mathbb{P}(J_i > 0) = \) probability a price jump is positive
- \(\bar{J}^+ = \mathbb{E}[J_i | J_i > 0] = \) expected value of a positive jump
Order Valuation

\[V(q, \delta) = \alpha(q)(\delta - \beta(q)) \]

Easy to solve for value function

- Can easily compute \(\alpha(\cdot) \), \(\beta(\cdot) \) numerically (linear integral equations)
- Can be solved in closed form in some instances (e.g., exponential trade size)

Required parameters:

- \(\gamma/\mu \) = ratio of arrival rate of jumps to arrival rate of trades
- \(\eta^+/\mu \) = ratio of arrival rate of cancellations to arrival rate of trades
- \(f(\cdot) \) = distribution of trade size
- \(\lambda \) = price impact coefficient
- \(p^+_J = \text{P}(J_i > 0) \) = probability a price jump is positive
- \(\bar{J}^+ = \text{E}[J_i | J_i > 0] \) = expected value of a positive jump
Structural Properties

\[V(q, \delta) = \alpha(q)(\delta - \beta(q)) \]

where

\[\alpha(q) = P(\tau_q < \infty) = \text{fill probability} \]
\[\beta(q) = \text{adverse selection costs conditional on trade} \]

Theorem.

1. \(\lim_{q \to \infty} \alpha(q) = p_J^+ = P(J_i > 0) \)

2. \(\lim_{q \to \infty} \beta(q) = \bar{J}^+ = E[J_i | J_i > 0] \)

3. \(\lim_{q \to \infty} V(q, \delta) = p_J^+(\delta - \bar{J}^+) \)
Empirical Example

Bank of America, Inc. (BAC) on 8/9/2013:

- Large daily volume, very liquid
- 1 tick bid-ask spread
- Large tick-size relative to price, ~ 7 (bp)
- We consider the NASDAQ order book
- Average queue length $= 50,030$ (shares) $\approx 720,000$
- We incorporate the liquidity rebate ≈ 0.3 (ticks)
Empirical Example

Bank of America, Inc. (BAC) on 8/9/2013:

- Large daily volume, very liquid
- 1 tick bid-ask spread
- Large tick-size relative to price, \(\sim 7 \text{ (bp)} \)
- We consider the NASDAQ order book
- Average queue length = 50,030 (shares) \(\approx \$720,000 \)
- We incorporate the liquidity rebate \(\approx 0.3 \) (ticks)

Calibrated parameters:

- \(\lambda = 4.82 \) (basis points per 1% of daily volume)
- \(\mu = 1.65 \) (trades per minute)
- \(\gamma = 0.7 \) (price changes per minute)
- Distribution of trade size: log normal with mean \(2.76 \times 10^3 \) shares and standard deviation \(5.99 \times 10^3 \) shares
we assume an uninformed trader: \(\delta_0 = (\text{half-spread}) + (\text{rebate}) = 0.8 \) (ticks)
Value of Queue Position

- we assume an uninformed trader: $\delta_0 = \text{(half-spread)} + \text{(rebate)} = 0.8 \text{ (ticks)}$
- $V(0, \delta_0) - V(\bar{q}, \delta_0) = 0.26 \text{ (ticks)}$
Empirical Validation by Backtesting

Data

- Market-by-order data for NASDAQ (ITCH)
- Full information on all limit order book events (order arrivals, cancellations, trades)
- Microsecond resolution timestamps
Empirical Validation by Backtesting

Data

- Market-by-order data for NASDAQ (ITCH)
- Full information on all limit order book events (order arrivals, cancellations, trades)
- Microsecond resolution timestamps

Backtesting

- Can track queue priority and simulate execution of a hypothetical limit order placed in the LOB
- Provides a non-parametric, model free estimate of queue value (but requires a lot of data ...)

Empirical Validation by Backtesting

Assumptions

- Artificial orders with infinitesimal size
 Hence, we assume no impact on other market participants
- Randomize between buying and selling
- Placed at random times at the end of the queue
- Orders rest in LOB until filled or until price moves away
Empirical Validation by Backtesting

Assumptions

- Artifical orders with infinitesimal size
 Hence, we assume no impact on other market participants
- Randomize between buying and selling
- Placed at random times at the end of the queue
- Orders rest in LOB until filled or until price moves away

Order Value Estimation

- For a sell order,

\[
\text{value} = \begin{cases}
0 & \text{if cancelled,} \\
\text{execution price} - \text{fundamental value} & \text{if filled.}
\end{cases}
\]

- “fundamental value” is estimated by the mid-price one minute after execution
- Compute average value over all orders placed
Empirical Validation Data Set

Data from August 2013

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Price</th>
<th>Average Bid-Ask Spread</th>
<th>Volatility</th>
<th>Average Daily Volume (shares, 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low ($), High ($)</td>
<td>(ticks), (bp)</td>
<td>(daily)</td>
<td></td>
</tr>
<tr>
<td>BAC</td>
<td>14.11, 14.95</td>
<td>0.98, 6.8</td>
<td>1.2%</td>
<td>87.9</td>
</tr>
<tr>
<td>CSCO</td>
<td>23.31, 26.38</td>
<td>1.00, 4.0</td>
<td>1.2%</td>
<td>38.7</td>
</tr>
<tr>
<td>GE</td>
<td>23.11, 24.70</td>
<td>0.99, 4.2</td>
<td>0.9%</td>
<td>29.6</td>
</tr>
<tr>
<td>F</td>
<td>15.88, 17.50</td>
<td>1.03, 6.2</td>
<td>1.4%</td>
<td>33.6</td>
</tr>
<tr>
<td>INTC</td>
<td>21.90, 23.22</td>
<td>0.99, 4.4</td>
<td>1.1%</td>
<td>24.5</td>
</tr>
<tr>
<td>PFE</td>
<td>28.00, 29.37</td>
<td>0.99, 3.4</td>
<td>0.7%</td>
<td>23.3</td>
</tr>
<tr>
<td>PBR</td>
<td>13.39, 14.98</td>
<td>0.99, 7.0</td>
<td>2.6%</td>
<td>17.9</td>
</tr>
<tr>
<td>EEM</td>
<td>37.35, 40.10</td>
<td>1.02, 2.6</td>
<td>1.2%</td>
<td>64.1</td>
</tr>
<tr>
<td>EFA</td>
<td>59.17, 62.10</td>
<td>0.98, 1.6</td>
<td>0.7%</td>
<td>14.4</td>
</tr>
</tbody>
</table>
Empirical Validation: Model Value vs. Backtest

(Results averaged over August 2013)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Order Value Model (ticks)</th>
<th>Order Value Backtest (ticks)</th>
<th>Fill Probability Model</th>
<th>Fill Probability Backtest</th>
<th>Adverse Selection Model (ticks)</th>
<th>Adverse Selection Backtest (ticks)</th>
<th>Order Value at the Front Model (ticks)</th>
<th>Order Value at the Front Backtest (ticks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAC</td>
<td>0.14</td>
<td>0.14</td>
<td>0.62</td>
<td>0.60</td>
<td>0.57</td>
<td>0.57</td>
<td>0.36</td>
<td>0.31</td>
</tr>
<tr>
<td>CSCO</td>
<td>0.08</td>
<td>0.07</td>
<td>0.63</td>
<td>0.59</td>
<td>0.68</td>
<td>0.68</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>GE</td>
<td>0.08</td>
<td>0.09</td>
<td>0.62</td>
<td>0.60</td>
<td>0.67</td>
<td>0.65</td>
<td>0.19</td>
<td>0.23</td>
</tr>
<tr>
<td>F</td>
<td>0.13</td>
<td>0.15</td>
<td>0.65</td>
<td>0.64</td>
<td>0.60</td>
<td>0.53</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>INTC</td>
<td>0.11</td>
<td>0.09</td>
<td>0.64</td>
<td>0.61</td>
<td>0.63</td>
<td>0.56</td>
<td>0.28</td>
<td>0.23</td>
</tr>
<tr>
<td>PFE</td>
<td>0.12</td>
<td>0.11</td>
<td>0.63</td>
<td>0.58</td>
<td>0.62</td>
<td>0.61</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>PBR</td>
<td>-0.03</td>
<td>-0.04</td>
<td>0.57</td>
<td>0.53</td>
<td>0.85</td>
<td>0.89</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>EMM</td>
<td>0.07</td>
<td>0.08</td>
<td>0.63</td>
<td>0.63</td>
<td>0.69</td>
<td>0.64</td>
<td>0.21</td>
<td>0.15</td>
</tr>
<tr>
<td>EFA</td>
<td>0.03</td>
<td>0.04</td>
<td>0.57</td>
<td>0.53</td>
<td>0.74</td>
<td>0.73</td>
<td>0.06</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Conclusions

• A tractable, dynamic model for valuing queue position
• For large tick-size assets, queueing effects can be very significant!
• Accounting for queue position cannot be ignored when solving market
 making or algorithmic trading problems
Conclusions

- A tractable, dynamic model for valuing queue position
- For large tick-size assets, queueing effects can be very significant!
- Accounting for queue position cannot be ignored when solving market making or algorithmic trading problems

Future Directions
Conclusions

- A tractable, dynamic model for valuing queue position
- For large tick-size assets, queueing effects can be very significant!
- Accounting for queue position cannot be ignored when solving market making or algorithmic trading problems

Future Directions

- Two-sided model, i.e., incorporate order book imbalance
Conclusions

- A tractable, dynamic model for valuing queue position
- For large tick-size assets, queueing effects can be very significant!
- Accounting for queue position cannot be ignored when solving market making or algorithmic trading problems

Future Directions

- Two-sided model, i.e., incorporate order book imbalance
- Is price-time priority with large tick sizes a good market structure? Compare to smaller tick size, pro rata, alternative mechanisms, etc.