Dark trading and price discovery

Carole Comerton-Forde

University of Melbourne

and

Tālis Putniņš

University of Technology, Sydney

Market Microstructure Confronting Many Viewpoints
11 December 2014

What is 'dark' trading?

Traditional stock exchange with 'lit' public limit order book

TLS - TELSTRA CORPORATION LIMITED. ORDINARY FULLY PAID Last/IAP VWAP Status \$3.885 -\$0.005 -0.1% \$3.890 \$3.920 \$3.880 \$3.894743 18.23M **Buyers** Sellers Level Orders # Quantity Price Price Quantity Orders # Level 2,251,132 \$3.880 \$3.890 1,622,925 1.725.866 \$3.870 \$3,900 1,474,199 1,866,369 \$3.860 \$3.910 1,369,873 997,298 \$3.840 \$3.930 1.006.268 923,661 \$3.830 \$3.940 971,263 375,336 \$3.820 \$3.950 1,896,532

Dark trading

Trading with <u>no pre-</u> <u>trade transparency</u>

The pros and cons

- Potential benefits include:
 - Additional liquidity and potentially block liquidity; and
 - Reduced market impact costs and info leakage

BUT

- Potential costs include:
 - Reduced incentives to display liquidity;
 - Fairness issues as dark orders step-ahead of lit;
 - Fragmentation of order flow;
 - Segmentation of order flow (no fair access requirements);
 - Lack of transparency around operations; and
 - Less efficient price discovery process

Our research questions

- We consider two types of dark trading:
 - Block
 - Non-block (we refer to this as dark)
- We answer three questions:
 - Where are informed and uninformed trades typically executed or how informative are lit, dark and block trades?
 - How does the level of dark and block trading impact adverse selection risk on the lit exchange?
 - What is the association between dark/block trading and price discovery?

Headline results

- Dark orders are less informed than lit orders
- Concentration of informed traders on lit book
- Increase in adverse selection risk, bid ask spread and price impact on lit market
- Quotes become more important in impounding information as dark trading increases
- Block and dark trades have different impacts
 - Low levels of dark trading can be beneficial, but high levels are harmful to informational efficiency
 - No evidence that block trades harm price discovery

Recent dark pool theory papers

- Zhu (2014): dark pools <u>improve</u> price discovery
 - More uninformed go to dark because they face better execution probability there relative to informed traders → concentrates info on the exchange
- Ye (2012): dark pools <u>harm</u> price discovery
 - Informed trader trades in both lit and dark, but reduces aggressiveness in lit market due to negative externality on his dark trading profits

Empirical setting

- Empirical research has been constrained by poor quality data
- Australian Securities Exchange (ASX) offers a number of benefits:
 - Complete picture of dark trading
 - Granular data with accurate time stamps for all trade types
 - No fragmentation in displayed liquidity

Empirical setting

- All trades executed under rules of exchange and reported to ASX
- Exceptions to pre-trade transparency:
 - Block and portfolio crossings (any price)
 - Priority crossings (at the quotes)
- New facilities introduced by ASX in June 2010:
 - Centre Point (separate dark order book)
 - Centre Point priority crossings
- Multiple dark broker crossing systems launched

Data

- All Ordinaries Index stocks (top 500 ASX stocks)
- Feb 2008 Oct 2011 (avoid Chi-X impact)
- Order level data from SIRCA (AusEquities)
- Use flags to classify trades as:
 - Lit (central limit order book)
 - Dark (crossing systems, internalization, manually matched trades, Centre Point)
 - Flags: Centre Point trades, Centre Point crossings, Priority Crossings
 - Block ("block specials" and "portfolio specials")
 - Flags: Special Crossings

Dark trading in Australia

Dark trading in Australia – trade frequency

Average trade sizes

Empirical strategy

- Estimate informational efficiency measures at a stock-date level:
 - Informativeness of different types trades
 - Spreads/adverse selection costs
 - Information shares (lit vs dark trades; trades vs midquotes)
 - Aggregate informational efficiency proxies
- Relate informational efficiency measures via stock-date panel regressions to:
 - Dark share of \$ volume
 - Block share of \$ volume

Format of panel regressions

$$y_{id} = \alpha + \beta_{DARK} DARK_{id} + \beta_{BLOCK} BLOCK_{id} + \sum_{j=1}^{6} \delta_{j} C_{jid} + \varepsilon_{id}$$

- Dependent variables: informational efficiency measures
- Dark and Block measured as % of total \$ value
- Control variables:
 - Log market capitalization
 - Log quoted spread
 - Proportion of stock-day during which spread is constrained at 1 tick
 - Log total \$ volume
 - Midquote volatility (std dev of 1-minute midquote returns)
 - Ratio of messages to trades (algo trading proxy)
- Fixed effects: none, stock, date
- Standard errors: clustered by stock and by date

Dealing with endogeneity

- Two-stage instrumental variables tests using two different sets of instruments
 - Exploit market structure changes that influence dark trading but are exogenous with respect to price discovery characteristics of particular stocks
 - Removal of 10 second rule, change in fees, launch of Centrepoint, launch of broker-operated dark pools
 - DARK and BLOCK instrumented by the level of dark/block trading in other stocks in the size quartile (as per Buti et al. (2011), Hasbrouck and Saar (2012))
- IV regressions provide stronger results

Which trade type is more informed?

- Use Hasbrouck (1991) vector auto-regression (VAR) framework to measure informativeness of trades
- Calculate the informativeness of lit, dark and block volume as the cumulative impulse response of midquote returns for a shock of +\$10,000 of signed lit, dark, and block volume, respectively, holding all other variables equal to their unconditional means

	Mean	Median
PriceImpactLIT (bps/\$10,000)	3.62	1.91
PriceImpactDARK (bps/\$10,000)	3.31	0.03
PriceImpactBLOCK (bps/\$10,000)	0.15	0.01

Do we observe wider spreads?

	Spread	Spread	Spread
DARK	0.006	0.020	0.020
	(11.05)***	(10.23)***	(9.75)***
BLOCK	0.004	-0.006	-0.004
	(7.52)***	(-1.3)	(-1.53)
Controls	All	All	All
R^2	0.74	0.75	0.75
Estimation method	OLS	2SLS	2SLS
Fixed effects	None	None	None
Instruments	None	Set 1	Set 2

- ↑ Dark from 0% to 10% of dollar volume → ↑quoted spreads by 11% (128bps to 142bps for average stock)
- \uparrow Dark from 10% to 12.5% \rightarrow \uparrow spreads by 2.2% (2.8 bps for average stock)

Information shares

- Information leadership share (ILS) adapted from Hasbrouck (1995) and Yan and Zivot (2010)
 - measures relative speed at which innovations in fundamental value are reflected ("who moves first" in price discovery)
- All measures based on a VECM decomposition into temporary/permanent components
- Estimated each stock-day using 1-second intervals
- Estimate for two price series:
 - lit trade prices vs dark/block trade prices
 - trade prices vs midquotes

Information shares

Lit vs. dark information shares:

- Lit trades impound more information than dark/block trades (mean = 0.75, median = 0.84)
- As share of dark trading increases, contribution to price discovery increases at a slower rate than volume share
 → dark trades contain less information than lit trades

Quote vs. trade information shares:

- Midquotes impound slightly more information than trade prices (mean = median = 0.56)
- As share of dark trading increases, contribution of quotes to price discovery increases → informed traders effective liquidity providers using limit orders

What happens to aggregate informational efficiency?

- Concentration of informed traders in lit market, and uninformed traders in the dark, changes incentives to become informed:
 - No change in the amount of private information held in aggregate by informed traders, higher concentration of informed traders will improve informational efficiency (consistent with Zhu (2014))
 Or
 - Endogenous and costly information acquisition → fewer investors become informed → decline in informational efficiency

Aggregate informational efficiency

 Autocorrelation of midquote returns (Hendershott and Jones, 2005):

$$Autocorrelation_k = Corr(r_{k,t}, r_{k,t-1})$$

- Absolute value, then first principle component of: $k \in \{10 \text{ sec}, 30 \text{ sec}, 60 \text{ sec}\}$
- 2. Variance ratio (Lo and MacKinlay, 1988):

$$VarianceRatio_{kl} = \left| \frac{\sigma_{kl}^2}{k\sigma_l^2} - 1 \right|$$

- First principle component of:
 (1sec, 10sec), (10sec, 60sec), (1min, 5min)
- 3. Return predictability using lagged market returns (Hou and Moskowitz, 2005), 1-minute midquote returns:

$$r_{i,t} = \alpha_i + \beta_i r_{m,t} + \sum_{k=1}^{10} \delta_{i,k} r_{m,t-k} + \varepsilon_{it} \qquad Inefficiency_{Delay} = 100 \left(1 - \frac{R_{Constrained}^2}{R_{Unconstrained}^2} \right)$$

Aggregate informational efficiency

	Autocorrelation _{Factor}	VarianceRatio _{Factor}	Delay
DARK	0.042	0.029	0.048
	(16.84)***	(17.75)***	(8.72)***
BLOCK	-0.013	-0.006	-0.002
	(-5.15)***	(-3.55)***	(-0.26)
Control	All	All	All
R^2	0.06	0.10	0.17
Fixed effects	None	None	None

- Increasing share of dark trading → deterioration of informational efficiency
- 2. Not true for block trades: *improvement* in 2 of the 3 informational efficiency measures
- 3. Dark results consistent for low frequency measures

Aggregate info efficiency: nonlinearity?

Aggregate info efficiency: nonlinearity?

Conclusions

- Dark trading relatively uninformed → concentrating informed traders on lit market
- Dark trading increases adverse selection risk, spreads and price impact on lit market
- Quotes become more informative relative to trades, with informed traders providing liquidity
- Low levels of dark trading benign or beneficial, but high levels of dark trading harms informational efficiency
- Block trades are not harmful

Policy implications

- Not all dark trading is the same
 - Block trading does not harm price discovery
 - Some dark trading is beneficial, but too much is harmful
- Regulatory action should consider existing dark trading at stock-level
- Action of European Commission to limit dark trading to 8% market wide, and 4% for individual venues may have unintended consequences
- Regulations need to carefully consider these differences