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Main classes of volatility models

Prices are often modeled as continuous semi-martingales of the
form

dPt = Pt(µtdt + σtdWt).

The volatility process σs is the most important ingredient of the
model. Practitioners consider essentially three classes of volatility
models :

Deterministic volatility (Black and Scholes 1973),

Local volatility (Dupire 1994),

Stochastic volatility (Hull and White 1987, Heston 1993,
Hagan et al. 2002,...).

In term of regularity, in these models, the volatility is either very
smooth or with a smoothness similar to that of a Brownian motion.
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Long memory in volatility

Definition

A stationary process is said to be long memory if its
autocovariance function decays slowly, more precisely :

+∞∑
t=1

Cov[σt+x , σx ] = +∞.

Power law long memory for the volatility :

Cov[σt+x , σx ] ∼ C/tγ ,

with γ < 1, is considered a stylized fact and has been notably
reported in Ding and Granger 1993 (using extra day data) and
Andersen et al., 2001 and 2003 (using intra day data).
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Fractional Brownian motion (I)

To take into account the long memory property and to allow for a
wider range of smoothness, some authors have introduced the
fractional Brownian motion in volatility modeling.

Definition

The fractional Brownian motion (fBm) with Hurst parameter H is
the only process WH to satisfy :

Self-similarity : (WH
at )

L
= aH(WH

t ).

Stationary increments : (WH
t+h −WH

t )
L
= (WH

h ).

Gaussian process with E[WH
1 ] = 0 and E[(WH

1 )2] = 1.
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Fractional Brownian motion (II)

Proposition

For all ε > 0, WH is (H − ε)-Hölder a.s.

Proposition

The absolute moments of the increments of the fBm satisfy

E[|WH
t+h −WH

t |q] = Kqh
Hq.

Proposition

If H > 1/2, the fBm exhibits long memory in the sense that

Cov[WH
t+1 −WH

t ,W
H
1 ] ∼ C

t2−2H
.
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Long memory volatility models

Some models have been built using fractional Brownian motion
with Hurst parameter H > 1/2 to reproduce the long memory
property of the volatility :

Comte and Renault 1998 (FSV model) :

d log(σt) = νdWH
t + α(m − log(σt))dt.

Comte, Coutin and Renault 2012, where they define a kind of
fractional CIR process.
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About option data

Classical stochastic volatility models generate reasonable
dynamics for the volatility surface.

However they do not allow to fit the volatility surface, in
particular the term structure of the ATM skew :

ψ(τ) :=

∣∣∣∣ ∂∂k σBS(k , τ)

∣∣∣∣
k=0

,

where k is the log-moneyness and τ the maturity of the
option.
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About option data : the volatility skew

The black dots are non-parametric estimates of the S&P ATM
volatility skews as of June 20, 2013 ; the red curve is the power-law
fit ψ(τ) = A τ−0.4.
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About option data : fractional volatility

The skew is well-approximated by a power-law function of
time to expiry τ . In contrast, conventional stochastic volatility
models generate a term structure of ATM skew that is
constant for small τ .

Models where the volatility is driven by a fBm generate an
ATM volatility skew of the form ψ(τ) ∼ τH−1/2, at least for
small τ .
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Intraday volatility estimation

We are interested in the dynamics of the (log)-volatility process.
We use two proxies for the spot (squared) volatility of a day.

A 5 minutes-sampling realized variance estimation taken over
the whole trading day (8 hours).

A one hour integrated variance estimator based on the model
with uncertainty zones (Robert and R. 2012).

Note that we are not really considering a “spot” volatility but an
“integrated” volatility. This might lead to some slight bias in our
measurements (which can be controlled).

From now on, we consider realized variance estimations on the
S&P over 3500 days, but the results are fairly “universal”.
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The log-volatility

Figure : The log volatility log(σt) as a function of t, S&P.
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Measure of the regularity of the log-volatility

The starting point of this work is to consider the scaling of the
moments of the increments of the log-volatility. Thus we study the
quantity

m(∆, q) = E[| log(σt+∆)− log(σt)|q],

or rather its empirical counterpart.

The behavior of m(∆, q) when ∆ is close to zero is related to the
smoothness of the volatility (in the Hölder or even the Besov
sense). Essentially, the regularity of the signal measured in lq norm
is s if m(∆, q) ∼ c∆qs as ∆ tends to zero.
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Scaling of the moments

Figure : log(m(q,∆)) = ζq log(∆) + Cq. The scaling is not only valid
as ∆ tends to zero, but holds on a wide range of time scales.

J. Gatheral, T. Jaisson, M. Rosenbaum Volatility is rough 16



Some elements about volatility modeling
Building the Rough FSV model

The structure of volatility in the RFSV model
Application of the RFSV model : Volatility prediction

Microstructural foundations for the RFSV model

Monofractality of the log-volatility

Figure : Empirical ζq and q → Hq with H = 0.14 (similar to a fBm
with Hurst parameter H).
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Distribution of the log-volatility increments

Figure : The distribution of the log-volatility increments is close to
Gaussian.
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A geometric fBm model ?

These empirical findings suggest we model the log-volatility as a
fractional Brownian motion :

σt = σeνW
H
t .

However, this model is not stationary. In particular, the empirical
autocovariance function of the (log-)volatility (which will be of
interest) does not make much sense.
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A geometric fOU model

We make it formally stationary by considering a fractional
Ornstein-Uhlenbeck model for the log-volatility denoted by Xt

dXt = νdWH
t + α(m − Xt)dt.

This process satisfies

Xt = ν

∫ t

−∞
e−α(t−s)dWH

t + m.

We take the reversion time scale 1/α very large compared to the
observation time scale.

This model is a particular case of the FSV model. However, in
strong contrast to FSV, we take H small and 1/α large. Thus we
call our model Rough FSV (RFSV).
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m(2,∆) and the parameters of the FSV

Figure : log(m(2,∆)) as a function of log(∆) in our data (black) and
in the FSV model with H = 0.56 (there is a closed formula) (blue). On
real data, the scaling is not only valid as ∆ tends to zero but holds on a
wide range of ∆. In the FSV, the slope at the beginning of the graph is
governed by the parameter H and then stationarity kicks in.
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Behavior of our model at reasonable time scales

When the reversion time scale becomes large (α→ 0), the mean
reverting term is negligible and the log-volatility is almost a fBm.

Proposition

As α tends to zero,

E
[

sup
t∈[0,T ]

|Xα
t − Xα

0 − νWH
t |
]
→ 0.
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Autocorrelogram of the (log-)volatility in our model

Proposition

Let t > 0, ∆ > 0. As α tends to zero,

Cov[Xα
t ,X

α
t+∆] = Var[Xα

t ]− 1

2
ν2 ∆2H + o(1).

Proposition

As α tends to zero,

E[σt+∆σt ] = e2E[Xα
t ]+2Var[Xα

t ]e−ν
2 ∆2H

2 + o(1).

We now check these relations on the data.
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Empirical autocorrelogram of the log-volatility

Figure : Cov[log(σt), log(σt+∆)] as a function of ∆2H . This fits the
prediction of our model.
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Empirical autocorrelogram of the volatility

Figure : log(E[σtσt+∆]) as a function of ∆2H . This fits again the
prediction of our model.
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Long memory in volatility

It is widely believed that the (log-)(squared-)volatility exhibits
power law long memory

Cov[σx+t , σx ] ∼
t→+∞

k

tγ
,

with γ < 1.

We review two tests for this long memory property. We show that
they can wrongly deduce a power law long memory on data
generated from our model and are thus quite fragile.
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Log-log autocovariance of the volatility

Figure : log(Cov[σx+∆, σx ]) as a function of log(∆). The
autocorrelation function does not behave as a power law function.
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Scaling of the variance of the cumulated volatility

Figure : V (∆) = Var[
∑∆

t=1 σt ] as a function of log(∆) on empirical
(above) and simulated (below) data. Power law long memory implies that
it should behave as ∆2−γ , as we observe on the data and the model.
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Fractional differentiation of the log-volatility

Figure : ACF of the log-volatility (blue) and of ε = (1− L)d log(σ),
with d = 0.4 (green) on empirical (above) and simulated (below) data.
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Multiscaling in finance

An important property of volatility time series is their
multiscaling behavior, see Mantegna and Stanley 2000 and
Bouchaud and Potters 2003.

This means one observes essentially the same law whatever
the time scale.

In particular, there are periods of high and low market activity
at different time scales.

Very few models reproduce this property, see multifractal
models (Bacry et al.,...).
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Figure : Empirical volatility over 10, 3 and 1 years.
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Our model on different time intervals

Figure : Simulated volatility over 10, 3 and 1 years. We observe the
same alternations of periods of high market activity with periods of low
market activity.
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Apparent multiscaling in our model

Let LH,ν be the law on [0, 1] of the process eνW
H
t .

Then the law of the volatility process on [0,T ] renormalized

on [0, 1] : σtT/σ0 is LH,νT
H

.

If one observes the volatility on T = 10 years (2500 days)
instead of T = 1 day, the parameter νTH defining the law of
the volatility is only multiplied by 2500H ∼ 3.

Therefore, one observes quite the same properties on a very
wide range of time scales.

The roughness of the volatility process (H = 0.14) implies a
multiscaling behavior of the volatility.
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Prediction of a fractional Brownian motion

There is a nice prediction formula for the fractional Brownian
motion.

Proposition (Nuzman and Poor 2000)

For H < 1/2

E[WH
t+∆|Ft ] =

cos(Hπ)

π
∆H+1/2

∫ t

−∞

WH
s

(t − s + ∆)(t − s)H+1/2
ds.
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Our prediction formula

We apply the previous formula to the prediction of the
log-volatility :

E
[
log σ2

t+∆|Ft

]
=

cos(Hπ)

π
∆H+1/2

∫ t

−∞

log σ2
s

(t − s + ∆)(t − s)H+1/2
ds

or more precisely its discrete version :

E
[
log σ2

t+∆|Ft

]
=

cos(Hπ)

π
∆H+1/2

N∑
k=0

log σ2
t−k

(k + ∆ + 1/2)(k + 1/2)H+1/2
.

We compare it to usual predictors using the criterion

P =

∑N−∆
k=1 ( ̂log(σ2

k+∆)− log(σ2
k+∆))2∑N−∆

k=1 (log(σ2
k+∆)− E[log(σ2

t+∆)])2
.
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AR(5) AR(10) HAR(3) RFSV
SPX2.rv ∆ = 1 0.317 0.318 0.314 0.313
SPX2.rv ∆ = 5 0.459 0.449 0.437 0.426

SPX2.rv ∆ = 20 0.764 0.694 0.656 0.606
FTSE2.rv ∆ = 1 0.230 0.229 0.225 0.223
FTSE2.rv ∆ = 5 0.357 0.344 0.337 0.320

FTSE2.rv ∆ = 20 0.651 0.571 0.541 0.472
N2252.rv ∆ = 1 0.357 0.358 0.351 0.345
N2252.rv ∆ = 5 0.553 0.533 0.513 0.504

N2252.rv ∆ = 20 0.875 0.795 0.746 0.714
GDAXI2.rv ∆ = 1 0.237 0.238 0.234 0.231
GDAXI2.rv ∆ = 5 0.372 0.362 0.350 0.339

GDAXI2.rv ∆ = 20 0.661 0.590 0.550 0.498
FCHI2.rv ∆ = 1 0.244 0.244 0.241 0.238
FCHI2.rv ∆ = 5 0.378 0.373 0.366 0.350

FCHI2.rv ∆ = 20 0.669 0.613 0.598 0.522
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Regression window and horizon

After a simple change of variable, the prediction of the
log-volatility can be written :

E[log(σ2
t+∆)|Ft ] ∼

cos(Hπ)

π

∫ 1

0

log(σ2
t−∆u)

(u + 1) uH+1/2
du.

The only time scale that appears in the above regression is the
horizon ∆.

As it is known by practitioners :

If trying to predict volatility one week ahead, one should essentially
look at the volatility over the last week. If trying to predict the
volatility one month ahead, one should essentially look at the
volatility over the last month.
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Conditional distribution of the fractional Brownian motion
and prediction of the variance

Proposition (Nuzman and Poor 2000)

In law,
Wt+∆|Ft = N (E[Wt+∆|Ft ], c∆2H)

with

c =
sin(π(1/2− H))Γ(3/2− H)2

π(1/2− H)Γ(2− 2H)
.

Therefore, our predictor of the variance writes :

E[σ2
t+∆|Ft ] = eE[log(σ2

t+∆)|Ft]+2ν2c∆2H
.
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AR(5) AR(10) HAR(3) RFSV
SPX2.rv ∆ = 1 0.520 0.566 0.489 0.475
SPX2.rv ∆ = 5 0.750 0.745 0.723 0.672

SPX2.rv ∆ = 20 1.070 1.010 1.036 0.903
FTSE2.rv ∆ = 1 0.612 0.621 0.582 0.567
FTSE2.rv ∆ = 5 0.797 0.770 0.756 0.707

FTSE2.rv ∆ = 20 1.046 0.984 0.935 0.874
N2252.rv ∆ = 1 0.554 0.579 0.504 0.505
N2252.rv ∆ = 5 0.857 0.807 0.761 0.729

N2252.rv ∆ = 20 1.097 1.046 1.011 0.964
GDAXI2.rv ∆ = 1 0.439 0.448 0.399 0.386
GDAXI2.rv ∆ = 5 0.675 0.650 0.616 0.566

GDAXI2.rv ∆ = 20 0.931 0.850 0.816 0.746
FCHI2.rv ∆ = 1 0.533 0.542 0.470 0.465
FCHI2.rv ∆ = 5 0.705 0.707 0.691 0.631

FCHI2.rv ∆ = 20 0.982 0.952 0.912 0.828
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Definition

Hawkes processes as models for the order flow

The starting point of our microstructural analysis is the
modeling of the order flow though Hawkes processes.

A Hawkes process (Nt)t≥0 is a self exciting point process,
whose intensity at time t, denoted by λt , is of the form

λt = µ+
∑

0<Ji<t

φ(t − Ji ) = µ+

∫
(0,t)

φ(t − s)dNs ,

where µ is a positive real number, φ a regression kernel and
the Ji are the points of the process before time t.

These processes have been introduced in 1971 by Hawkes in
the purpose of modeling earthquakes and their aftershocks
and are nowadays very popular in finance.
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Hawkes processes in practice

Nearly unstable heavy-tailed Hawkes processes

When trying to calibrate such models on high frequency data, two
main phenomena almost systematically occur :

The L1 norm of φ close to one→ high degree of endogeneity
of the market due to high frequency trading, see Bouchaud et
al. 2013, Filimonov and Sornette 2013.

The function φ has a power law tail→ metaorders splitting.
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Assumptions and asymptotic framework

Sequence of Hawkes processes

We consider a sequence of point processes (NT
t )t≥0 indexed

by T . We have NT
0 = 0 and the process is observed on the

time interval [0,T ]. Furthermore, our asymptotic setting is
that the observation scale T goes to infinity.

The intensity process (λTt ) is defined for t ≥ 0 by

λTt = µT +

∫ t

0
φT (t − s)dNT

s ,

where µT is a sequence of positive real number and φT a non
negative measurable function on R+ which satisfies
‖φT‖1 < 1.
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Assumptions and asymptotic framework

Assumptions

There is some α ∈ (0, 1) such that

φ(x) ∼
x→+∞

K

x1+α
, lim

T→+∞
Tα(1− ‖φT‖1) = δλ > 0.

Normalized processes

We investigate the limit in law as T goes to infinity of the
sequence of processes

aTN
T
tT , t ∈ [0, 1],

with aT a suitable normalizing factor.
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Agent based explanation for the behavior of the volatility

Limit theorem

For α > 1/2, the sequence of renormalized Hawkes processes
converges to some process which is differentiable on [0, 1].
Moreover, the law of its derivative Y satisfies

Yt = Fα,λ(t) +
1√
µ∗λ

∫ t

0
f α,λ(t − s)

√
YsdB

1
s ,

with B1 a Brownian motion and

f α,λ(x) = λxα−1Eα,α(−λxα).

Therefore H = α− 1/2. Furthermore, for any ε > 0, Y has Hölder
regularity α− 1/2− ε.
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Microstructural foundations for the RFSV model

Then, it is clearly established that there is a linear relationship
between cumulated order flow and integrated variance.

Thus endogeneity of the market together with order splitting
lead to a superposition effect which explains (at least partly)
the rough nature of the observed volatility.

J. Gatheral, T. Jaisson, M. Rosenbaum Volatility is rough 48


	Some elements about volatility modeling
	Building the Rough FSV model
	The structure of volatility in the RFSV model
	Application of the RFSV model: Volatility prediction
	Microstructural foundations for the RFSV model

